mrpro.phantoms.brainweb.augment
- mrpro.phantoms.brainweb.augment(size: int = 256, trim: bool = True, max_random_shear: float = 5, max_random_rotation: float = 10, max_random_scaling_factor: float = 0.1, p_horizontal_flip: float = 0.5, p_vertical_flip: float = 0.5) Callable[[Tensor, Generator | None], Tensor] [source]
Get an augmentation function.
Creates a function that applies augmentation to the input tensor consisting of rotation, shearing, scaling and horizontal/vertical flipping.
The image is scaled such that the largest dimension is in [size * (1 - max_random_scaling), size * (1 + max_random_scaling)], then padded/cropped to size
size x size
. In scaling, the aspect ratio is preserved. Random horizontal and vertical flips are applied with probabilityp_horizontal_flip
andp_vertical_flip
.- Parameters:
size (
int
, default:256
) – resulting image will be (size x size) pixels.trim (
bool
, default:True
) – If True, remove fully zero outer rows and columns before scalingmax_random_shear (
float
, default:5
) – Maximum random shear in degrees, shear is in [-max_shear, max_shear] in x and y direction.max_random_rotation (
float
, default:10
) – Maximum random rotation in degrees, rotation is in [-max_rotation, max_rotation].max_random_scaling_factor (
float
, default:0.1
) – Strength of the scaling randomization (see above).p_horizontal_flip (
float
, default:0.5
) – Probability of horizontal flip.p_vertical_flip (
float
, default:0.5
) – Probability of vertical flip.
- Returns:
Callable that applies augmentation to the input tensor