mrpro.operators.models.WASABITI
- class mrpro.operators.models.WASABITI[source]
Bases:
SignalModel
[Tensor
,Tensor
,Tensor
]WASABITI signal model.
- __init__(offsets: Tensor, recovery_time: Tensor, rf_duration: float | Tensor = 0.005, b1_nominal: float | Tensor = 3.75e-6, gamma: float = GYROMAGNETIC_RATIO_PROTON) None [source]
Initialize WASABITI signal model for mapping of B0, B1 and T1 [SCH2023].
- Parameters:
offsets (
Tensor
) – frequency offsets [Hz] with shape(offsets, ...)
recovery_time (
Tensor
) – recovery time between offsets [s] with shape(offsets, ...)
rf_duration (
float
|Tensor
, default:0.005
) – RF pulse duration [s]b1_nominal (
float
|Tensor
, default:3.75e-6
) – nominal B1 amplitude [T]gamma (
float
, default:GYROMAGNETIC_RATIO_PROTON
) – gyromagnetic ratio [Hz/T]
References
[SCH2023]Schuenke P, Zimmermann F, Kaspar K, Zaiss M, Kolbitsch C (2023) An Analytic Solution for the Modified WASABI Method: Application to Simultaneous B0, B1 and T1 Mapping and Correction of CEST MRI, Proceedings of the Annual Meeting of ISMRM
- __call__(*args: Unpack) Tout [source]
Apply the forward operator.
For more information, see
forward
.
- forward(b0_shift: Tensor, relative_b1: Tensor, t1: Tensor) tuple[Tensor] [source]
Apply WASABITI signal model.
- Parameters:
- Returns:
signal with shape
(offsets, *other, coils, z, y, x)
- __add__(other: Operator[Unpack, Tout]) Operator[Unpack, Tout] [source]
- __add__(other: Tensor) Operator[Unpack, tuple[Unpack]]
Operator addition.
Returns
lambda x: self(x) + other(x)
if other is a operator,lambda x: self(x) + other*x
if other is a tensor
- __matmul__(other: Operator[Unpack, tuple[Unpack]]) Operator[Unpack, Tout] [source]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) Operator[Unpack, Tout] [source]
Operator multiplication with tensor.
Returns
lambda x: self(x*other)