mrpro.operators.ElementaryFunctional
- class mrpro.operators.ElementaryFunctional(target: Tensor | None | complex = None, weight: Tensor | complex = 1.0, dim: int | Sequence[int] | None = None, divide_by_n: bool = False, keepdim: bool = False)[source]
Bases:
Functional
Elementary functional base class.
Here, an ‘elementary’ functional is a functional that can be written as \(f(x) = \phi ( weight ( x - target))\), returning a real value. It does not require another functional for initialization.
- __init__(target: Tensor | None | complex = None, weight: Tensor | complex = 1.0, dim: int | Sequence[int] | None = None, divide_by_n: bool = False, keepdim: bool = False) None [source]
Initialize a Functional.
We assume that functionals are given in the form \(f(x) = \phi ( weight ( x - target))\) for some functional \(\phi\).
- Parameters:
target – target element - often data tensor (see above)
weight – weight parameter (see above)
dim – dimension(s) over which functional is reduced. All other dimensions of weight ( x - target) will be treated as batch dimensions.
divide_by_n – if true, the result is scaled by the number of elements of the dimensions index by dim in the tensor weight ( x - target). If true, the functional is thus calculated as the mean, else the sum.
keepdim – if true, the dimension(s) of the input indexed by dim are maintained and collapsed to singeltons, else they are removed from the result.
- abstract forward(*args: Unpack) Tout
Apply forward operator.