mrpro.operators.models.SpoiledGRE
- class mrpro.operators.models.SpoiledGRE[source]
Bases:
SignalModel
[Tensor
,Tensor
,Tensor
]Spoiled gradient echo signal model.
- __init__(flip_angle: float | Tensor, echo_time: float | Tensor, repetition_time: float | Tensor) None [source]
Initialize spoiled gradient echo signal model.
Assumes perfect spoiling and a longitudinal steady state. This is a simplified special case of
TransientSteadyStateWithPreparation
.The model is defined as: \(S = M_0 e^{-t_r / T_2^*} \frac{\sin(\alpha)(1 - e^{-t_e / T_1})}{(1 - \cos(\alpha) e^{-t_e / T_1})}\)
where \(M_0\) is the equilibrium magnetization, \(\alpha\) is the flip angle, \(t_e\) is the echo time, and \(t_r\) is the repetition time.
- __call__(*args: Unpack[Tin]) Tout [source]
Apply the forward operator.
For more information, see
forward
.
- forward(m0: Tensor, t1: Tensor, t2star: Tensor) tuple[Tensor] [source]
Calculate Signal.
- Parameters:
- Returns:
Signal Shape
1 ...
, for example1, *other, coils, z, y, x
or1, samples
, respectively.
- __add__(other: Operator[Unpack[Tin], Tout]) Operator[Unpack[Tin], Tout] [source]
- __add__(other: Tensor) Operator[Unpack[Tin], tuple[Unpack[Tin]]]
Operator addition.
Returns
lambda x: self(x) + other(x)
if other is a operator,lambda x: self(x) + other*x
if other is a tensor
- __matmul__(other: Operator[Unpack[Tin2], tuple[Unpack[Tin]]]) Operator[Unpack[Tin2], Tout] [source]
Operator composition.
Returns
lambda x: self(other(x))
- __mul__(other: Tensor | complex) Operator[Unpack[Tin], Tout] [source]
Operator multiplication with tensor.
Returns
lambda x: self(x*other)