mrpro.operators.models.SpoiledGRE

class mrpro.operators.models.SpoiledGRE[source]

Bases: SignalModel[Tensor, Tensor, Tensor]

Spoiled gradient echo signal model.

__init__(flip_angle: float | Tensor, echo_time: float | Tensor, repetition_time: float | Tensor) None[source]

Initialize spoiled gradient echo signal model.

Assumes perfect spoiling and a longitudinal steady state. This is a simplified special case of TransientSteadyStateWithPreparation.

The model is defined as: \(S = M_0 e^{-t_r / T_2^*} \frac{\sin(\alpha)(1 - e^{-t_e / T_1})}{(1 - \cos(\alpha) e^{-t_e / T_1})}\)

where \(M_0\) is the equilibrium magnetization, \(\alpha\) is the flip angle, \(t_e\) is the echo time, and \(t_r\) is the repetition time.

Parameters:
__call__(*args: Unpack[Tin]) Tout[source]

Apply the forward operator.

For more information, see forward.

Note

Prefer using operator_instance(*parameters), i.e. using __call__ over using forward.

forward(m0: Tensor, t1: Tensor, t2star: Tensor) tuple[Tensor][source]

Calculate Signal.

Parameters:
  • m0 (Tensor) – Equilibrium signal. Shape , for example *other, coils, z, y, x or samples.

  • t1 (Tensor) – T1 relaxation time. Shape , for example *other, coils, z, y, x or samples.

  • t2star (Tensor) – T2* relaxation time. Shape , for example *other, coils, z, y, x or samples.

Returns:

Signal Shape 1 ..., for example 1, *other, coils, z, y, x or 1, samples, respectively.

__add__(other: Operator[Unpack[Tin], Tout]) Operator[Unpack[Tin], Tout][source]
__add__(other: Tensor) Operator[Unpack[Tin], tuple[Unpack[Tin]]]

Operator addition.

Returns lambda x: self(x) + other(x) if other is a operator, lambda x: self(x) + other*x if other is a tensor

__matmul__(other: Operator[Unpack[Tin2], tuple[Unpack[Tin]]]) Operator[Unpack[Tin2], Tout][source]

Operator composition.

Returns lambda x: self(other(x))

__mul__(other: Tensor | complex) Operator[Unpack[Tin], Tout][source]

Operator multiplication with tensor.

Returns lambda x: self(x*other)

__radd__(other: Tensor) Operator[Unpack[Tin], tuple[Unpack[Tin]]][source]

Operator right addition.

Returns lambda x: other*x + self(x)

__rmul__(other: Tensor | complex) Operator[Unpack[Tin], Tout][source]

Operator multiplication with tensor.

Returns lambda x: other*self(x)